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Lecture 3 - Snarks

Theorem 1 (Vizing). Every simple graph satisfies

�0
(G)  �(G) + 1.

Can you find graphs G such that �(G) = 3 and �0
(G) = 4 ?

Goal is to define snarks as cubic graphs that are not 3-edge-colorable. Name inspired by “real” snarks that are

some elusive, rare creatures in the sea from the book The Hunting of the Snarks by Lewis Carrol.

Here we try to investigate what properties snarks should have and then we define them later.

1: What is chromatic index of the following graph?

Solution: It is 4

Lemma 2 (Blanuša). Let c : E(G) ! {1, 2, 3} be a 3-edge-coloring of a cubic graph G and let C be an edge-cut.

Denote by ci the number of edges of C colored i. Then,

c1 ⌘ c2 ⌘ c3 (mod 2).

2: Prove the lemma. Hint: Consider Kempe chains.

Solution: Consider colors 1 and 2, they induce a set of cycles, actually a 2-factor.
This 2-factor must have even number of common edges with C, and so we obtain
c1 ⌘ c2 (mod 2). In a similar way we show that c3 is of the same parity as c1 and c2.

Proposition 3. If a cubic graph has a bridge then it is not 3-edge-colorable.

3: Prove the proposition.

Solution: Just apply the Blanuša Lemma.

Bridges corresponds to loops in the dual graph, and we do not consider them in vertex colorings of planar

graphs. So, we do not like our snarks to have bridges, as we want to relate the snarks with the Four Color

Theorem.
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ftp.p
z'in -- 4

E.EE#..
. .

÷÷÷÷÷

o_O :÷÷



Fall 2020 Math 680D:2 2/4

Proposition 4. Let G be a cubic graphs with 2-edge-cut {x1y1, x2y2} and let G1 and G2 the components of

G� x1y1 � x2y2 as it is depicted below and finally let G⇤
1 = G1 + x1x2 and G⇤

2 = G2 + y1y2. Then �0
(G) = 4 if

and only if �0
(G?

1) = 4 or �0
(G?

2) = 4.
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4: Prove the proposition.

Solution: If every 3-edge coloring if G, then edges x1y1 and x2y2 must have the same
color due to Blanuša lemma. This gives �0(G) = 3, then edges x1y1 and x2y2 must
have the same color due to Blanuša lemma. This gives �0(G?

1
) = 3 and �0(G?

2
) = 3.

If both �0(G?
1
) = 3 and �0(G?

2
) = 3, then �0(G) = 3.

Proposition 5. Let G be a cubic graphs with a 3-cycle x1x2x3, and let G0
be the cubic graph obtained from G

by contracting this 3-cycle. Then, �0
(G) = 4 if and only if �0

(G0
) = 4.

This is called �/Y operation for obvious reason.
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x2 x3
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x
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5: Prove the proposition.

Solution: It is easy to see that �0(G) = 3 if and only if �0(G0) = 3 by inspecting
possible 3-edge-colorings.
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Now we deal with 4-cycles.

Proposition 6. Let G be a cubic graphs and e and f two edges of G. Subdivide twice e by vertices a1 and a2
and also subdivide twice f by vertices b1 and b2, and connect a1 by b1 and a2 by b2. Denote the resulting graph

by G⇤
. If �(G⇤

) = 4, then �(G) = 4.

e f

G
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a2
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G?

6: Prove the proposition.

Solution: A 3-edge-coloring of G can be extended to a 3-edge-coloring of G?. There
are two cases. Depends if the colors of e and f are the same or di↵erent.

Note that in the previous proposition does not hold ”if and only if”, i.e., it can happen that �(G) = 4 but

�(G⇤
) = 3. This can be easily seen by taking G to be the Petersen graph.

7: Show that the following graph is 3-edge-colorable.
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For next, let us consider nontrivial 3-edge-cuts.

Proposition 7. Let G be a cubic graph with nontrivial 3-edge-cut C, and let G � C has the components G1

and G2 and G⇤
1 = G/G2 and G⇤

2 = G/G1. Then �0
(G) = 4 if and only if �0

(G⇤
1) = 4 or �0

(G⇤
2) = 4.

G1 G2

C

G?
1 G?

2

8: Prove the proposition.

Solution: If we have 3-edge-colorings of G1 and G2 we can easily obtain a 3-edge-
coloring of G by permitting the colors. If we have a 3-edge-coloring of G, then Blanuša
lemma implies that edges on C are colored di↵erently, and so we obtain immediately
3-edge-colorings of G⇤

1
and G⇤

2
.

Above propositions, somehow tell that the presence of 3- and 4-cycles is not the real reason while should a cubic

graph be non-3-edge-colorable, and similarly holds for 2-edge-cuts and 3-edge-cuts. So we do not like snarks to

have such objects. Following the line of this reasoning with few more similar claims, which we omit here, we

conclude with a definition of the snarks as: snarks are cyclically 4-edge-connected cubic graphs of girth at least

five with chromatic index 4.
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Proposition 8. The Petersen graph is the smallest snark.

Proof. Suppose that G is a snark on  9 vertices or it is a snark on 10 vertices distinct from the Petersen graph.

9: Show that G has a cyclic edge-cut. Hint: start with shortest cycle.

Solution: We first claim that G has a cyclic edge-cut. To see this let C be a shortest

cycle in G. Let be �C be the set of edges that separate C from the rest of the graph.

If C is not a cyclic edge-cut then there is a vertex v in G�C adjacent to two vertices

of C, say x and y. As C is of length � 5, one can easily find in C + xvy a shorter

cycle than C. This establish the claim. Actually, the claim holds for any cubic graph

of grith � 5.

10: Suppose now that Z = {x0y0, x1y1, . . . , xk�1yk�1} a smallest cyclic edge-cut of G with all xi’s on one side

and finish the proof. (Note: definition guarantees only 4-edge cut or more.)

Solution: Since both sides contain a cycle, G must have 10 vertices, and both sides

of it must have precisely 5 vertices. If k = 4 then both sides are graphs with only one

odd vertex, and if k > 5, then we cannot have a cycle on each side. So k must be equal

to 5. Assume that the cycle one side is x0x1x2x3x4. Then, y0 must not be adjacent to

y1 and y4 as the girth of G is � 5. So y0 is adjacent to y2 and y3. In a similar way

we obtain that for every i, vertex yi is adjacent to yi+2 and yi+3 (index modulo 5), and

this gives us that G is the Petersen graph.

Until 1975, there were known only 5 snarks: the Peteresen graph, the two Blanuša snarks on 18 vertices depicted

below. The Szekeres snark on 50 vertices and the Descartes snark on 210 vertices. Then, Isaacs came with two

constructions of infinitely many snarks.

Figure 1: Blanuša snarks.
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Dot product. A dot product of two cubic graphs L and R, denoted by L ·R, is defined as follows:

1. remove adjacent vertices x and y of L, where N(x) = {r, s, y} and N(y) = {t, u, x};

2. remove any two independent edges ab and cd from R;

3. connect r with a, s with b, t with c, and u with d.

s
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Following claim enable us to construct infinitely many snarks.

Proposition 9. If L and R are 4-edge-chromatic cubic graphs, then L ·R is 4-edge-chromatic.

11: Prove the proposition. Hint: Suppose for contradiction that L ·R is 3-edge-colorable.

Solution: Suppose L · R is 3-edge-colorable. By Blanuša lemma, without loss of

generality, two edges of ra, sb, tc, ud are colored by 1 and the other two by 2. Actually,

without loss of generality, it is enough to consider two cases.

First case is when edges ra, sb are colored by 1, and edges tc, ud are both colored by

1 or both colored by 2. In this case we obtain a coloring 3-edge-coloring of G2 by

assigning 1 to ab and 1 or 2 to cd.

The second case is when edges ra, tc are colored 1 and edges sb, ud are colored 2. In

this case, we will easily obtain a coloring of G in the following way: color rx and ty by

1, color sx and uy by 2, and color xy by 3.

Flower snarks. Let k � 3 be an odd. We define the graph Fk in the following way:

1. V (Fk) = {xi, yi : i 2 I(k)} [ {wi : i 2 I(2k)},

2. E(Fk) = {xixi+1, xiyi, wjwj+1 : i 2 I(k), j 2 I(2k)} [ {yiwi, yiwi+k : i 2 I(k), i+ k 2 I(2k)},

where we take indices at u’s and v’s modulo k, and at w’s modulo 2k. See Figure 2 for a local sketch of the

construction.

Proposition 10. For every odd k � 5, the graph Fk is a snark.

cbna by Riste Škrekovski and Bernard Lidický
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Figure 2: Local structure of a flower snark.

These graphs are called flower snarks, as they look like flowers.

12: Draw F3, F5, and F7. Why F3 is not a snark?

Solution:

Notice that F3 contains a 3-cycle, and if we contract it, then we obtain the Petersen

graph.

1 Some conjectures related to the snarks

Most central conjecture regarding edge-coloring of cubic graphs is the Tutte conjecture. Almost 20 years ago,

a proof was announced by Sanders, Robertson, Seymour and Thomas, but their proof never appeared. Note

that this conjecture can be restated as every snark contains a subdivision of the Petersen graph.

Conjecture 11 (Tutte). Every Petersen minor-free bridgeless cubic graph is 3-edge-colorable.

13: Find subdivisions of Petersen in F3, F5, and F7.
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In what follows, we consider several central conjectures in this area. The first one is by Fulkerson from 1971.

Conjecture 12 (Fulkerson). Let G be a bridgless cubic graph. If a graph H is obtained by doubling every edge

in a simple G, then it is 6-edge-colorable.

14: Why is the above conjecture trivial for 3-edge-colorbale graphs? (i.e. not snarks)

Solution: Double the 3-edge coloring as well

A slightly weaker conjecture but still popular is a conjecture that edges of a cubic graph can be covered by 5

perfect matchings.

15: Why is the 5 perfect matching conjecture implied by the Fulkerson’s conjecture?

Solution: Obviously this follows by Fulkerson conjecture by removing one color class.

Very popular conjecture is the following one, which was independently proposed by Szekeres and Seymour, it

is known under the name Cycle Double Conjecture. At first glance, it looks that this conjecture has nothing to

do with edge-colorings of cubic graphs but let us remark that the conjecture holds in general if it is true for

cubic graphs. The conjecture has several stronger versions and one of them is of topological flavor and claims

that every 2-connected graphs can be embedded on a surface such that each face is a cycle.

Conjecture 13 (Szekeres, Seymour). Edges of every 2-edge-connected graphs can be covered by cycles (possible

some of them appear twice), such that each edge belongs to precisely two cycles.

16: Show that Cycle Double cover conjecture holds for 3-edge-colorable cubic graphs.

Solution: Take a 3-edge coloring. Then every pair of color classes gives a set of

cycles. Every edge will be covered exactly twice.

Another very attractive (but perhaps also di�cult) conjecture is the following one of Jaeger. It implies both

the Fulkerson Conjecture and the Cycle Double Conjecture.

Conjecture 14 (Jaeger). Every cubic bridgeless graph G can be edge-colored with colors that represent the edges

of the Petersen graph such that any three mutually adjacent edges of G are colored with colors that represent

three mutually adjacent edges of the Petersen graph.

17: Show that Jaeger’s conjecture is true for 3-edge-colorable cubic graphs.

Solution: It is again obviously true for 3-edge-colorable cubic graphs as one can

use only three pairwise adjacent edges of Petersen graph as colors to color the original

graph.
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